Ace’s Hardware

Scaling Server Performance

Scaling Server Performance
By Brian Neal — January 2003

[

Scaii] .

Where Performance is Concerned, Optimization is Key

When our Hitchhiker's Guide to the Mainframe article caught the attention of Slashdot last month, quite a few people
were curious to know about how our server handled the traffic. This is a topic we have discussed previously in Building
a Better Webserver in the 21st Century and SPECmine - A Case Study on Optimization, but since there was so much
interest in some more in-depth information on the topic, | decided to spend some time explaining how the data object
caching in our web application can do so much for performance without sacrificing the ability to serve true dynamic
content. I'll start with some statistics gathered on December 4th.

Our traffic for the day totaled over 590,000 requests (hits), with over 250,000 of those being requests for pages.
Requests peaked at 677 per minute, which of course includes everything (images, pages, files, etc.). The peak number
strictly for article pages was 235 per minute. Perhaps the most impressive statistic is that during these peaks, our web
application running in Java (including the HTTP server) was only consuming 20% of available CPU time, and all article
requests were served in 4 milliseconds or less. Furthermore, our database was only at 7.5% CPU utilization. So, when
the system was serving roughly 11 requests per second, the CPU was nearly 75% idle. Let's take a look at the traffic for
the day, graphed on a per-minute basis:

Requests and Article Pages December 4, 2002

800
—— Hits

700
—— Pages

600

500

400

300

200

100

0
O ¥ ©® N © O ¥ ©O N © O ¥ ©O N © O ¥ © N © O ¥ ©
S 0 © 4 4 d A N M » § ¥ IS W M S 0o o +d 494 N N |
S & & & F B 8 N ©®© 6 & 4 A B 8K O 5 S d N ®
A d d 934 9 49 d d 4 & N

In the graph above, we have two different sets of data. The first is requests, which is essentially anything requested
from the server -- images, dynamic pages, static pages, etc. The second is article pages, like this one.
Page 1
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

http://www.aceshardware.com/read.jsp?id=50000316
http://www.slashdot.org/
http://www.aceshardware.com/read.jsp?id=45000240
http://www.aceshardware.com/read.jsp?id=45000240
http://www.aceshardware.com/read.jsp?id=45000251

Ace’s Hardware
Scaling Server Performance
As you can see, the initial spike in traffic from Slashdot occurs around 1:30 AM. There is other dynamic content, such
as the front page or the message board, that is not accounted for in this data, but nevertheless, the graph gives you a
good idea of the ratio between article pages (text) and everything else. Traditionally, dynamic content is often one of
the most intensive types of content for a webserver, but as you will see in the next graph, that doesn't always have to
be the case.

Requests Per Minute / CPU Utilization

250 100%
—— Requests 90%
l | Database
200 - M i hm 80%
——Java

70%

150 60%

50%

Requests
CPU%

100 40%
30%
50 20%
10%

"vl l|II.
u‘ ol

J
o W

0%

0:00
1:07
2:14
3:21
4:28
5:35
6:42
7:49
8:56
10:03
11:10
12:17
13:24
14:31
15:38
16:45
17:52
18:59
20:06
21:13
22:20
23:27

In this graph we see the CPU utilization of both the Java web application and the database, sampled each minute,
relative to the article requests per minute. Here you can clearly see the peaks | mentioned earlier happening roughly
between 9:30 and 10:00 AM. You can also see that the average CPU utilization of both the web application and the
database is rather low: 14% for Java and 6.9% for the database. The Java CPU utilization peaks at 51% for a very short
time early on, as it is caching content on demand as traffic begins to spike. You can also see occasional spikes in the
database CPU utilization, as cached data is periodically updated. When you consider that there are servers out there
that will fall over and die when faced with this kind of traffic, an overall average CPU utilization of 21% for a modest
550 MHz uniprocessor machine is not too shabby.

We monitor and collect statistics for quite a few different components of our server's performance. Thanks to the
presence of hardware performance counters in Solaris, we can monitor a number of CPU-level statistics, including
average cycles per instruction, bus utilization, branch-misprediction rate, cache miss rate, etc. As with the other
performance data we record, these statistics are collected in 1-minute intervals.

Page 2
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance

Data, Instruction, and L2 Cache Miss Rates

——dcm
icm
———ecm
= 10 per. Mov. Avg. (dcm)
= 10 per. Mov. Avg. (ecm)

— 10 per. Mov. Avg. (icm)

il 1 MI' .;|‘|, m

,| ‘llhll
‘1 N ’l"ﬂ'rr w 7

17:48

Above is the data, instruction, and L2 cache miss rates of the server CPU, graphed over the course of the day for
December 4, 2002 in 1 minute intervals. As this is a rather crowded graph, trendlines have been added to improve
visibility. Aside from some occasional dips and spikes, the miss rates remain rather consistent throughout the day.
Keep in mind that although the traffic was considerable, the overall CPU utilization remained rather low.

MIPS and Bus Utilization

45000
40000
35000
30000
25000
20000
15000
10000

5000

0:00
1:05
2:10
3:15
4:20
5:25
6:30
7:35
8:40
9:45
10:50
11:55
13:00
14:05
15:10
16:15
17:20
18:25
19:30
20:35
21:40
22:45
23:50

Here we see the processor MIPS and address bus utilization. Once again, given that the CPU load averages only around
20% and remains fairly consistent, there aren’t any tremendously notable variations in most of the data from the
performance counters.

Page 3
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance

Scaling with Larger Workloads Effectively

As you may have guessed by now, the key to our server performance does not lie in the physical hardware itself, but in
the software. Specifically, our web application is designed from the ground up to serve even some of our most complex
dynamic pages in milliseconds. To accomplish this, you have to isolate the bottlenecks in your software and eliminate
them. Running complex SQL queries on every request, for instance, can be a severe limit to a server's capacity. Even
simple queries can be a problem if the demand is high enough.

To take this example a little further, it's important to realize that the problem is not just the query, but all the steps
required to even be able to run the query. This includes the time required to allocate a database connection, or create
one if none are available from a connection pool, the time required to optimize and compile the query (unless it's a
stored procedure), and the time required to generate the result and send it back to the application.

Aside from the query time, this added complexity also introduces some potential bottlenecks depending upon the
situation. Since it is necessary to allocate a connection to communicate with the database, we have to consider how
such connections are allocated in order to avoid possible limits on the number of concurrent connections and make
sure the total number of open connections does not consume too much memory. Aside from this, there are also other
guery-dependent issues, such as table locks. If the application stalls under high load as a result of an exclusive table
lock or a database connection limit, there may be serious consequences for performance.

Software Bottlenecks

In the webserver article | mentioned earlier, | described a situation where a server running a database-driven dynamic
site on Apache 1.3.x and PHP could literally DoS itself when subjected to high loads (like those from Slashdot). In that
situation, the database connections are poorly distributed amongst individual HTTP server processes. To improve
performance, these connections can be made to persist between requests, but since HTTP is a stateless protocol and
each individual process is unware of the others, the persistent database connection is permanently associated with
that specific HTTP process and can only be used for requests handled by it.

This differs from traditional connection pooling where all open connections are pooled and shared between all
threads/processes. In the case of a connection pool, a connection can be allocated from the pool when needed and
then later returned so that it may be used by other processes.

Back to the Apache 1.3.x example, we have a large number of HTTP processes with open database connections that are
very likely, at any given moment, not serving requests requiring interaction with the database. Consider the graph
shown earlier, comparing requests for article pages with all other requests. If the server is serving a dynamic page with
five images in it, then there will be five static requests for each dynamic one.

There's another specific issue with Apache 1.3.x regarding how keepalives are handled. This is a feature designed to
improve performance by holding the connection to the client open following a request for a short time in the event
that further requests are made. This makes sense, as individual pages often need multiple requests to be downloaded
in the case of images and so forth. However, this also means that each HTTP process must wait idle for a certain period
of time, perhaps 10 or 15 seconds, before accepting requests from a different client. When a server encounters a large
number of concurrent requests from unique clients, this behavior can result in a large number of idle HTTP processes
waiting to timeout.

The effect is cumulative. A machine serving dynamic database-driven pages is under high load, so it spawns more
processes to handle all the concurrent requests. Since the persistent database connections in use by existing HTTP
processes are not universally available, the newly created processes have to open more database connections, even if
others are not currently in use. Additionally, since keepalives are enabled and there are a large number of unique
clients, a significant portion of the HTTP process pool is idle and cannot serve new clients until they timeout. This
means even more HTTP processes have to be created and even more database connections have to be opened. The real
question in this situation is what resource will the server run out of first: connections or memory?

Page 4
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

http://www.aceshardware.com/read.jsp?id=45000248

Ace’s Hardware

Scaling Server Performance
Faster or More Efficient?

It's true that you can fight bottlenecks like these with hardware, but it's an expensive proposition. In the case
described above, you could need two or three times the hardware, depending upon the amount of traffic, or even
more. If we assume for the sake of argument that the application load is distributed evenly amongst all the server's
major components, then this means you would need to increase CPU performance, memory size (and performance),
and disk performance proportionally. This could be accomplished by upgrading the CPUs, memory, and disks/storage
array or by clustering. And all this is just to handle the existing load.

Configuring the Ace's Hardware Web Server...

We made some substantial upgrades to our single-thread compute performance and memory when we replaced our old
server last year. Specifically, we went from four 125 MHz CPUs with 512 MB of RAM to a single 550 MHz CPU with 2 GB
of RAM. However, the increased server performance did not reduce the average article load time from 4 seconds to 4
milliseconds. To accomplish this, our web application had to be reimplemented from the ground up.

As mentioned earlier, you can mitigate performance issues by throwing hardware at them. If database performance is
lacking, a fast RAID array with a large cache can alleviate the problem. But even a system with solid state disks (SSDs)
can't outperform a system that doesn't have to run the query in the first place.

Page 5
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance

Inside the Web Server Application

By caching data on demand inside the application, we can avoid the database altogether. This means no need to
allocate a database connection, no time spent compiling/optimizing the query, no time spent running the query and
returning the results, and no inter-process communication (IPC). By eliminating the bottleneck, we can avoid all the
potential consequences that bottleneck presents in high-load situations. Let's take a look at what happens inside the
application when a client requests an article:

Java Process

Application

Database

Client

Above is a diagram describing the relationship between the client, server application, and database. As you can see,
the HTTP server, application logic, and data object cache are all in the same process running on the server. The data
object caching is possible because the application is persistent, rather than just a collection of scripts executed in a
stateless manner, and can share objects between any and all requests. Communication between these components is
very quick relative to talking to the database or (much more so) the client. Now, keeping this diagram in mind, let's
break the request down step-by-step:

Step 1. |GET /read.jsp?id=50000333

Step 2.

Step 3. |if(articleData == NULL) {

Step 3b.

Step 4.

}

generatePage(articleData);

Each general step in the process has been color-coded according to the diagram above and includes pseudo-code
describing what is actually occurring. The request is initiated by the client, which talks to the HTTP server. The
application checks to see whether or not the requested article is cached. If so, the page is generated from the cached
data and then sent to the client.

If the requested article is not cached, then a database connection is allocated from the connection pool and a query is
executed to retrieve the article from the database. The data from the query is stored in an object for use by the
application and this object is subsequently added to the cache for future requests.

Page 6
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance
Benchmarking with ApacheBench

So, just how much time do we save by avoiding the database access? To find out, | benchmarked five article requests.
Each article was requested twice. On the first request, the article was uncached, meaning the time required to
allocate a database connection, run a query, and get the result was benchmarked along with the rest of the process.
On the second request, the article was cached, so only the time required to retrieve the article from cache and
generate the page was benchmarked. The results shown below were obtained from our server running with minimal
load (> 95% idle):

Speed of Cached VS Uncached Articles

Test |Database Time |Total Time (Uncached) |Total Time (Cached) Difference
11 1134 ms 1138 ms 13 ms 4500%
2 1118 ms 1121 ms 4 ms 2925%
3 1167 ms 1171 ms 4 ms 4175%
4 214 ms 217 ms 4 ms 5325%
5 1161 ms 1165 ms 13 ms 5400%
\Average |159 ms 1162 ms 3.6 ms 14400%

As you can see, the difference between the overall time for the cached and uncached pages is tremendous. Of course,
one might say that even in the worst case, the uncached time is only two tenths of a second. However, two decimal
places is a big difference and it really adds up under high loads. The cached version will scale a lot better as well. Let's
see the results in the case of a loaded server:

1000 Requests, 18.8 KB Article

\ApacheBench Results \Connection Times
Benchmark |Total Req. [Concurrent Req. [Time |Requests/Sec. |min |avg max
\Uncached 1000 11 130.419 5 |7.67 1116 ms |129 ms 772 ms
\Cached 1000 11 16.799 s |59.53 13ms |15 ms |159 ms
\Uncached 1000 110 33.242's |30.08 1132 ms |329 ms 877 ms
\Cached 1000 10 15.522's |64.42 113 ms |149 ms 979 ms

Here, we're using ApacheBench to benchmark the server using the first page of "A Quick Look at the Fastest Apple
PowerMac." Both cached and uncached versions of the article page are tested, with no concurrency as well as results
from benchmarking with 10 concurrent connections. The connection times are ApacheBench's total connection times.
The benchmark was performed locally on the server during an unloaded period and each result is the best of three
runs.

As you can see, the cached version is many times faster than the uncached version, though that lead is diminished
when testing with 10 concurrent connections. With no concurrency, the uncached version handles a little less than 8
connections per second. The cached version, on the other hand, serves almost 60 connections per second. With 10
concurrent connections, the uncached version manages 30 requests per second, while the cached version is a little
better than twice as fast at 64 connections per second.

Unfortunately, ApacheBench does not support compressed content, meaning our test was benchmarking pages
significantly larger than the average article page our server usually transfers, as most modern browsers support
compression. Therefore, | ran another set of benchmarks, this time using pages that did not display the actual article
text. This reduced the request size from 18 KB to less than 1 KB (the actual compressed article page is roughly 5 KB).
Even though the article text is not included in the page, it is still retrieved (from cache or database) and
parsed/formatted as usual. So, this benchmark still presents the same computational load to the server as before, but
alleviates bandwidth as a possible bottleneck and minimizes the HTTP workload.

Page 7
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

http://www.aceshardware.com/read.jsp?id=50000333
http://www.aceshardware.com/read.jsp?id=50000333

Ace’s Hardware

Scaling Server Performance
1000 Requests, 933 byte Article (No Article Text)

\ApacheBench Results |Connection Times
IBenchmark |Total Req. [Concurrent Req. [Time |Requests/Sec. min |avg max
\Uncached 1000 11 118.671 5 8.43 1106 ms |117 ms |641 ms
\Cached 1000 11 5.577s |179.31 4ms |4ms |64 ms
\Uncached 1000 110 23.387 s 42.76 1111 ms 231 ms |1166 ms
\Cached [1000 110 5.464s |182.88 8ms |53 ms |509 ms

Both versions see improvements, but the performance of the cached version has tripled. It is now handling roughly 180
requests per second while the uncached version serves a little over 40 requests per second. For a less cluttered view of
the comparison, take a look at the following graph:

ApacheBench Article Request Performance

200

180

160 Cached
140 —#— Uncached

120
100
80
60

Requests Per Second

40
20

Full Article Full Article - 10 No Article Text No Article Text - 10
Concurrent Requests Concurrent Requests

The ApacheBench results have given us a good idea as to the performance differences between plain database driven
article requests and article requests augmented by a data object cache. But what about scalability, and how does our
chosen HTTP server and servlet engine, Resin (a high-performance Java application server with downloadable source),
stack up to Apache? To find out, | configured dedicated client and server systems on a 100Mbit switched network for
testing. The server was configured with the same software we run in our production environment, and the database
was populated with all the same data.

Page 8
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance
Benchmarking Web Server Scalability

The server hardware for the following tests is a 300 MHz Ultra 30 (2 MB L2 cache) running Solaris 9, configured with 386
MB of memory and a 7200 RPM Seagate Barracuda hard disk. This system has a slower CPU and less memory compared
to our production server, but this just means it will be saturated sooner. The client system is a 2.8 GHz Pentium 4 on
an ASUS P4T533, configured with 512 MB of RAM, running Mandrake Linux 9.

Client on the left, server on the right...

For benchmarking, httperf was used in conjunction with autobench, a Perl script designed to run httperf against a
server several times, with the number of requests per second increasing with each iteration. The output from the
program enables us to see exactly how well the system being tested performs as the workload is gradually increased
until it becomes saturated.

In each case, the server was benchmarked at an initial rate of 10 connections per second with 5 requests per
connection. This initial rate of 50 requests per second was increased by 50 for each iteration until reaching a total of
1500 requests per second. The benchmark was configured to timeout any request that takes longer than 5 seconds to
complete.

The benchmarked HTTP servers included:
e Caucho Technology's Resin 2.0.2

e Apache 1.3.27
» Apache 2.0.43

The most recent versions of all servers at the time of writing were tested with the exception of Resin. In this instance,
we benchmarked the exact same configuration we use in production. Theoretically, this puts Resin at something of a
disadvantage considering both Apache 1.3.27 and Apache 2.0.43 were compiled specifically for benchmarking with a
minimum of modules you might otherwise expect to find on a production Apache server (server side includes, user
directories, automatic directory indexes, logging, etc.). The final size of the stripped Apache 1.3.27 binary was 589 KB.
The Apache 2.0.43 binary was 622 KB and was compiled with the worker MPM. Resin was benchmarked with the
native/in-process HTTP server and ran under the Java HotSpot 1.4.0 Server VM.

Page 9
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

http://www.hpl.hp.com/personal/David_Mosberger/httperf.html
http://www.xenoclast.org/autobench/
http://www.caucho.com/
http://httpd.apache.org/
http://httpd.apache.org/

Key configuration parameters for all the servers follow:

e Resin 2.0.2

(0]
0o
(0]

thread-min 10
thread-max 500
ignore-client-disconnect false

* Apache 1.3.27

(0]

O O0OO0OO0OO0OOo

(0]

MinSpareServers 5
MaxSpareServers 10
StartServers 5

MaxClients 700
MaxRequestsPerChild 0
KeepAlive On
MaxKeepAliveRequests 500
KeepAliveTimeout 15

e Apache 2.0.43

(0]

O O0OO0OO0OO0OO0OO0OOo

StartServers 2

MaxClients 150
MinSpareThreads 25
MaxSpareThreads 75
ThreadsPerChild 25
MaxRequestsPerChild 0
KeepAlive On
MaxKeepAliveRequests 500
KeepAliveTimeout 15

Ace’s Hardware

Scaling Server Performance

Before benchmarking, each server was tested with httperf at 1500 requests per second to make sure that the server
would be saturated by this rate and to allow the server to build up any runtime caches, thread/process pools, etc. The
maximum number of file descriptors was set to 8192 on both the client and server machines.

Static HTTP Performance

Serving static content is the least demanding workload a modern day HTTP server will encounter. There's no dynamic

content to create, text to format, or databases to query -- just files to transfer. Even though many more complex sites
on the Internet today serve dynamic content, static content is still very common in the form of images, file downloads,
and so forth. For our first test, we'll compare the static HTTP performance of all three servers using a 67 byte GIF file.

The servers are benchmarked from 50 to 1500 requests per second.

Page 10
Ace’s Hardware — http://www.aceshardware.com/

Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware

Scaling Server Performance

1400

1200

1000

800

600

400

200

50
150
250
350
450
550
750
950

1050
1150
1250
1350
1450

Request Rate

Average Server Response Rate - Static Content

—— Resin 2.0.2
Apache 1.3.27
~—— Apache 2.0.43

As you can see, the request rate begins at 50 requests per second and increases steadily until it reaches 1500 requests
per second. All three servers match the demanded workload up until roughly 800 connections per second. At this point,
the Apache servers become saturated. Apache 1.3.27 sustains a maximum of 828 requests per second, while Apache
2.0.43 actually becomes saturated slightly lower at a maximum of 799 requests per second. Resin 2.0.2 continues on

and maxes out at 1232 requests per second. Let's compare the response times:

300
250
200
n
ElSO
100
50
"_—l\—/‘d
O © O 0 9 O 9 9 9O O QO O 9 O o
® B O H O O O O M O W O W O O
4 N ®m & 0w © N © O O «+d N Mo <
e

Request Rate

Server Response Time (ms) - Static Content

—— Resin 2.0.2
Apache 1.3.27
~—— Apache 2.0.43

Here we looking at the average amount of time each server requires before sending a response, so lower is better.
Again, the response time remains similar for all three servers until the request rate reaches roughly 800 requests per

second.

Page 11
Ace’s Hardware — http://www.aceshardware.com/

Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware
Scaling Server Performance
Beyond that point, the response time for the Apache servers begins to increase as they become saturated. At 850
requests per second, the average response time is 102 ms for Apache 1.3.27. At 1200 requests per second it is 157 ms,
and at 1500 requests per second it is 196 ms.

The results are similar for Apache 2.0.43, though the response times are higher. At 850 requests per second, the
response time is 159 ms. This grows to 230 ms at 1200 requests per second and ultimately to 267 ms at 1500 requests
per second.

The Resin response time fluctuates somewhat at higher request rates, but manages to stay well below that of the other
servers. At 850 requests per second, the response time for Resin is 12.7 ms. At 1200 requests per second, the response
time roughly doubles to 30 ms before finally reaching a maximum of 96 ms at 1450 requests per second. This is half the
maximum request time of Apache 1.3.27 and nearly a third of Apache 2.0.43's highest time.

It's interesting that despite the move to a worker thread model, Apache 2.0's static HTTP performance has not
improved over that of Apache 1.3. The server is, however, still relatively new. Julian T. J. Midgley, the author of
autobench, discusses Apache 2.0's performance relative to Apache 1.3:

"As someone else has said, Apache 2.0 doesn't give much of a speed advantage over Apache 1, and
certainly doesn't approach Zeus's performance, since it variously relies on a multi-threaded or multi-
process approach to connection handling. Even the multi-threaded MPM on a OS with decent thread
support, such as Solaris, falls foul of the context-switching problem before the number of connections
has risen much above those that Apache 1.0 can cope with."

Dynamic Cached vs Uncached Article Performance

Apache 2.0 may have room for improvement, but for the moment, Resin has managed to outperform both it and the
older Apache 1.3 by a respectable margin in static HTTP serving. This article began with a discussion on the
performance of dynamic content, however, and the advantages of caching data to serve fast and highly scalable
dynamic pages. So, let's take a look at the performance of cached and uncached articles now benchmarked with
autobench and httperf:

Cached vs Uncached Performance - 18.8 KB Article

60

50 ==

Cached
Uncached

o o o o o o o o o o o o o o o
Te] Te] Te] Yol Tp] [To] Yol [Tel Yol [Te] Yol Te] Te] Yol Tp]
— N ™ < [Te] © N~ [ee) (2] o — N [32] <

— — - — —

Request Rate

Page 12
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

http://groups.google.com/groups?hl=en&lr=&ie=UTF-8&oe=UTF-8&selm=nfw49.21127%24U44.1163773%40newsfep2-gui

Ace’s Hardware
Scaling Server Performance
This is the same 18.8 KB article as the one that was benchmarked with ApacheBench on our production system. As was
the case with those earlier benchmarks, the cached article code is identical to what is used on our server, while the
uncached version has been modified to only read from the database.

The performance of the uncached version is quite dismal, reaching a maximum of 21.1 requests per second before the
requests begin to pile up to the point where the server cannot return a response within the 5 second timeout imposed
by the benchmark -- effectively reducing the server's output to zero. The cached version, on the other hand, delivers
50.2 requests per second at peak and generally fluctuates between 35 and 50 requests per second as the demand
increases.

Why the poor performance for the uncached version? The database simply can't keep up. Since the article is uncached,
each request means another query for the database, and the system cannot sustain 50 queries per second, let alone
more. The maximum number of database connections was set to 75, but increasing this number further would not
improve performance given how quickly the system was saturated.

Many high-load database driven sites implement a two or three tier model where the database runs on one server and
the HTTP requests are handled by another (and the application on yet another in the case of a three tier model). This
eliminates the competition for resources between these individual components that you might see on a single system,
permitting a greater number of more complex database queries to be run, more complex pages to be generated, and so
on. By having the application cache the data queried from the database, you can effectively eliminate the need to go
to one of those tiers most of the time. This is exactly what you see for the cached performance result in the graph
above.

As we did earlier with ApacheBench, let's now take a look at the performance of the cache compared to the database
by eliminating the article text from the actual HTTP output. The article text is still retrieved from where it is stored
(the cache or the database) and is still formatted/processed as normal, but is not actually included in the output. As
was the case before, the result is a 933 byte file that minimizes the HTTP workload relative to the application and
database workloads.

Cached vs Uncached Performance - 933 Byte Article

400
/\ p—
%0 / v V\m—\
300
250 -
Cached
200
Uncached
150
100
50
0
o o o o o o o o o o o o o o o
Te) n n [Te) n n [T9) n Te) Te) wn [Te] [Te] n L
— N ™ < n [{e} ~ [oe] [e)] o - N ™ <
— — — — —

Request Rate

This time around the database has a little more to work with, though the same holds true for the application in the

case of the cached version. This translates into more performance, as the uncached version climbs to a peak of 48.2
requests per second and generally manages to maintain that same level of performance until the demanded request
rate reaches 350 requests per second.

Page 13
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

Ace’s Hardware
Scaling Server Performance
The cached version remains significantly faster, however. It serves a maximum of 366.7 requests per second, and
manages to sustain this level of performance for much longer than the database only version, despite increasing
demand. Now let's compare the response times:

Cached vs Uncached Response Time - 933 Byte Article

4500
4000 -

3500 &
3000 -

Cached

Uncached

2500
2000

ms

1500
1000
500

o o o
o um w
N~ o o

o
Yol

150
250
350
450
550
650
1050
1150
1250
1350

1450

Request Rate

The response time is measured in milliseconds, so lower is better, and again the cached version clearly faster. While
the best response time for the uncached version is 163.4 ms, that time climbs to almost 4 seconds (3815.6 ms) as the
demanded request rate increases. The cached version starts with a response time of 3.1 ms at 50 requests per second,
which increases to 382.2 ms at 500 requests per second, and finally 767.1 ms at 1500 requests per second.

Final Thoughts

There's always a lot of discussion about the newest CPUs, motherboards, and memory, but while thinking about all that
performance, it may pay to spend a little time thinking about how to use it effectively. When you consider that the
cached benchmarks performed in this article were anywhere from 2 to 7 times better than their uncached counterparts
on the same hardware using a relatively simple in-memory caching algorithm that can be written in a matter of
minutes for a persistent web application (like a Java servlet or JSP), you almost can't afford not to. To achieve the
same level of performance through more traditional means might require an investment in significantly more expensive
hardware and quite possibly a lot more of it. With this investment comes the potential for higher administration costs
and requirements, more software licenses, and a generally more complex solution. With a bit of thought in the
development, the web application we are running today is very simple, very scalable, very inexpensive, and very high
performance.

Ultimately, scalability means getting the most out of your hardware. We've managed to extract quite a bit of
performance from our current server, and yet there's still room to optimize even further. How much performance could
we get out of a larger system, like a dual 2.8 GHz Pentium 4 Xeon, or an AMD Opteron-based server? That's a very good
question. Until next time...

Page 14
Ace’s Hardware — http://www.aceshardware.com/
Copyright © 1998-2003 Ace’s Hardware. All Rights Reserved.

	Scaling Server Performance
	By Brian Neal – January 2003
	Where Performance is Concerned, Optimization is Key
	Scaling with Larger Workloads Effectively
	Software Bottlenecks
	Faster or More Efficient?
	Inside the Web Server Application
	Benchmarking with ApacheBench
	Benchmarking Web Server Scalability
	Static HTTP Performance
	Dynamic Cached vs Uncached Article Performance
	Final Thoughts

